Tech Forum 2024 MCU8 - Configurable Logic Block

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Luke Lin May 2024 • Why

• PIC16F131 Family Overview and Peripherals

Configurable Logic Block (CLB) Overview

 CLB Synthesizer Overview. MCC/Melody Integration

Overview

IoT Endpoints Have Sensors, Tons of Sensors Recent Trend: Push the data processing to the "Edge"

	ĥ	•	2	Â		5
	5	0	٥		ê	
Edge	Co.		<u>e</u>	5	"P'	Ê
	<u>ş</u> .	T 0	ß			5
	L.	N	â	é	0	30

Motion Sensors Gyroscope, radar, magnetometer, accelerator Acoustic Sensors Ultrasonic, Microphones, Geophones, Vibrometers

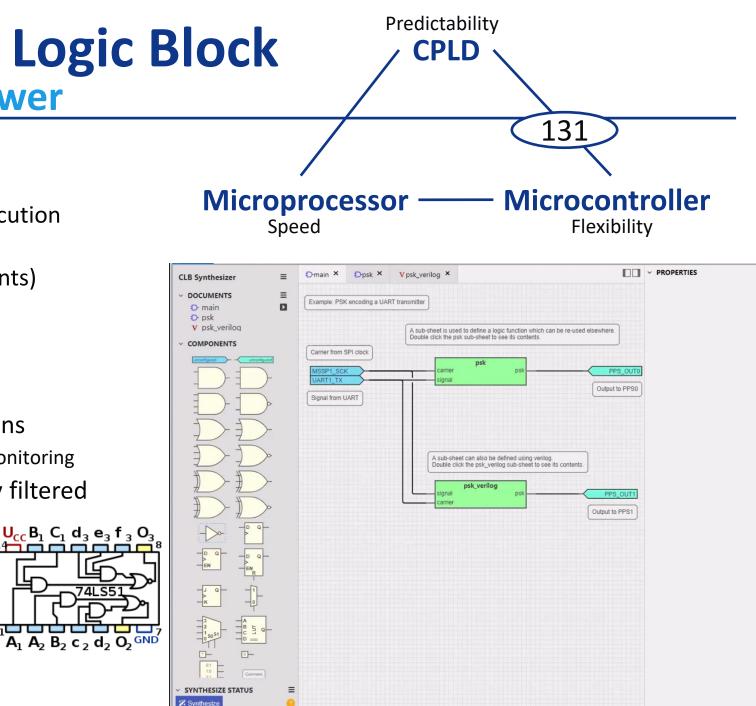
Environmental Sensors Temperature, Humidity, Pressure, IR, etc.

Touchscreen Sensors Capacitive, IR

> Force Sensors Pressure, Strain

Image Sensors Thermal, Image

Rotation Sensors Encoders **Biometric Sensors** Fingerprint, Heart rate, etc.


131's Configurable Logic Block Fast, Predictable, Low-Power

• Key messages:

- Low Power Instruction-Less Task Execution
- Predictable Low-Latency Operation
- BOM Reduction (MCU + Logic Elements)
- Graphical Configuration Tool

• Where to use:

- Extremely timing-critical applications
 - Ex. Power up sequencing, input state monitoring
- Repetitive signals needing similarly filtered
 - Ex. Multi-purpose buttons
- Direct Logic Chip Replacement
 - Ex. 7400 Series chip (\$0.84)
- Custom peripherals
 - Ex. 10-bit SPI, serial encoders/decoders

Why?

- Low Latency: The combination of CLB with the MCU enables real-time processing of input signals and data, which is highly beneficial for AI applications requiring quick responses.
- **Fast Logic Control**: CLB can achieve rapid logic control functions such as signal routing, state machine control, and peripheral coordination, thus improving the overall system response speed.
- Low Power Design: integrating their functions can reduce the overall power usage of the system, making it suitable for battery-powered devices.
- Reduced Hardware Cost / PCB Space: decrease the number of components and the complexity of the layout on the PCB, further reducing manufacturing costs and device size.
- **Reconfigurable Functionality**: offers programmable logic capabilities, allowing quick reconfiguration to adapt to changing application requirements, thus increasing system flexibility.
- **Reduced MCU Load**: By hardware-accelerating specific tasks, the MCU's computational burden is lessened, allowing it to focus on higher-level control and decision-making.
- Copy, not easy!

Family Overview and Peripherals

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

PIC16F131 Family Introduction

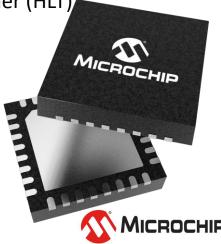
• PIC16 CPU

- Operating Speed:
 - DC-32 MHz clock input
 - 125 ns minimum instruction time
- 16-Level Deep Hardware Stack
- Low-Current Power-on Reset (POR)
- Configurable Power-up Timer (PWRT)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)

Memory

- 2 KW 8 KW Flash
- 256 1024 Bytes SRAM

• Pins and Packages


- 8, 14 and 20 pins
- DIP, SSOP, TSSOP, SOIC, VQFN

• Temperature grades

- Standard: -40°C to 85°C
- Extended: -40°C to 125°C

Key Features

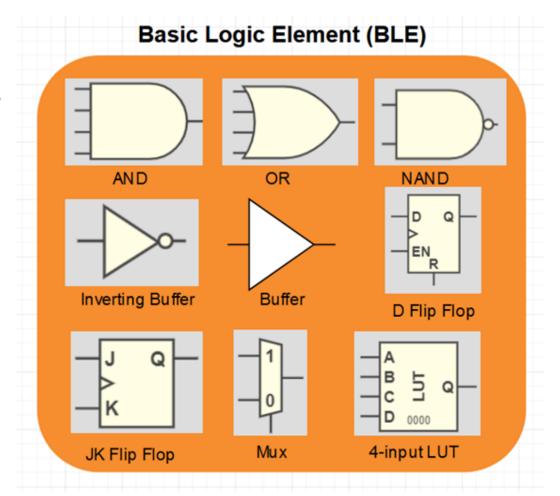
- One Configurable Logic Block (CLB)
- 10-bit Analog-to-Digital Converter with Computation (ADCC)
- One 8-Bit Digital-to-Analog Converter (DAC)
- Two Comparators (CMP) with configurable power modes for faster response time (50 ns) or lower power operation
- One Host Synchronous Serial Port (MSSP)
- One Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)
- Four Configurable Logic Cells (CLC)
- One Configurable 8/16-Bit Timer (TMR0)
- One 16-Bit Timer (TMR1) with Gate Control
- One 8-Bit Timer (TMR2) with Hardware Limit Timer (HLT)
- Two Capture/Compare/PWM (CCP) Modules
- Two Pulse-Width Modulators (PWM)

PIC16F131 Family Introduction

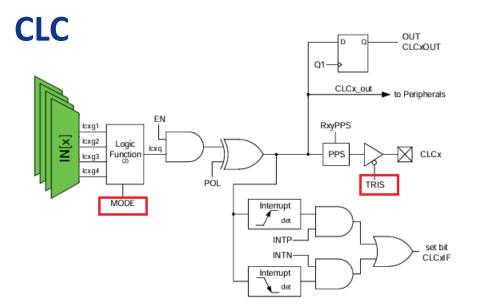
Device	Program Flash Memory (bytes)	Data SRAM (bytes)	Memory Access Partition/ Device Information Area	32-Bit CRC with NVM Scanner	l/O Pins ⁽¹⁾ / Peripheral Pin Select	8-Bit Timers with HLT/ 16-Bit Timers ⁽²⁾	10-Bit PWM/ CCP	10-Bit ADC Channels (External/Internal)	I2C/SPI	EUSART	CLB	CLC	FVR	CMP	8-bit DAC	SMBus Compatible I/O Pads	External Interrupt Pins	Interrupt-on-Change Pins	Windowed Watchdog Timer
PIC16F13113	3.5k	256	Y/Y	Y	6/Y	1/1	2/2	5/5	1/1	1	1	4	2	2	1	Y	1	6	Y
PIC16F13114	7k	512	Y/Y	Y	12/Y	1/1	2/2	11/5	1/1	1	1	4	2	2	1	Y	1	12	Y
PIC16F13115	14k	1024	Y/Y	Y	18/Y	1/1	2/2	17/5	1/1	1	1	4	2	2	1	Υ	1	18	Υ
PIC16F13123	3.5k	256	Y/Y	Y	6/Y	1/1	2/2	5/5	1/1	1	1	4	2	2	1	Υ	1	6	Y
PIC16F13124	7k	512	Y/Y	Y	12/Y	1/1	2/2	11/5	1/1	1	1	4	2	2	1	Υ	1	12	Υ
PIC16F13125	14k	1024	Y/Y	Y	18/Y	1/1	2/2	17/5	1/1	1	1	4	2	2	1	Υ	1	18	Y
PIC16F13143	3.5k	256	Y/Y	Y	6/Y	1/1	2/2	5/5	1/1	1	1	4	2	2	1	Y	1	6	Y
PIC16F13144	7k	512	Y/Y	Y	12/Y	1/1	2/2	11/5	1/1	1	1	4	2	2	1	Y	1	12	Y
PIC16F13145	14k	1024	Y/Y	Y	18/Y	1/1	2/2	17/5	1/1	1	1	4	2	2	1	Y	1	18	Y

PIC16F131xx – Introducing the CLB

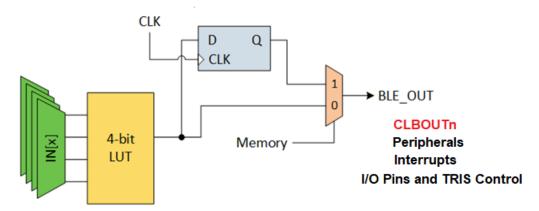
- The PIC16F13145 product family adds to the cost-effective general-purpose PIC16 the Configurable Logic Block (CLB) peripheral for additional digital logic flexibility and faster response time
- The CLB extends the reach and build on our previous glue-logic type options, such as the Configurable Logic Cell (CLC) and Custom Configurable Logic (CCL)
- The CLB offers greater customization and allows more complex logic designs to be incorporated into the MCU. This module will help absorb discrete logic components into the microcontroller and reduce BOM and board space.
- This module will also provide flexibility to the user to create custom peripherals and protocols to interface with unique sensors and other components
- MCC integrated graphical tool for easy configuration of the CLB


Configurable Logic Block

Overview


What Is CLB?

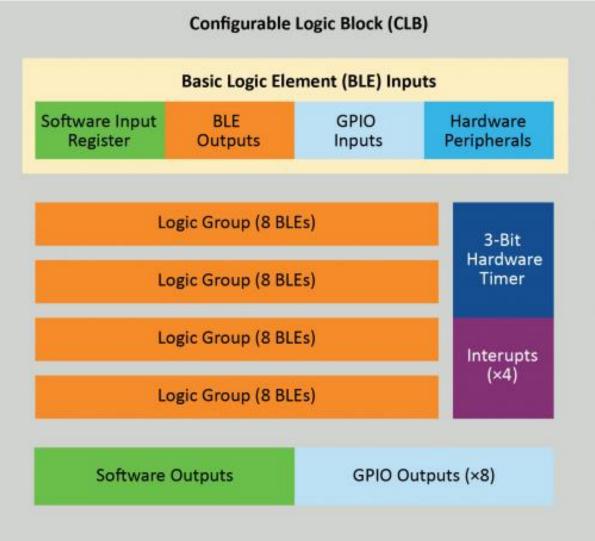
- The Configurable Logic Block (CLB) module provides multiple Basic Logic Elements (BLEs) of user-programmed digital logic that operate without CPU intervention
 - Support user-programmable asynchronous and synchronous binary logic operations (combinational, sequential or combination)
 - Internal and/or external signals may be used as input to each BLE
 - CLB outputs may be routed out to the port I/O pins, interrupts or directly to peripherals inputs
- Two sets of register interfaces:
 - Special Function Register (SFR) interface
 - Configuration interface



CLC vs. CLB

- 4/8 CLCs
- Predefined components (MODE)
- Configurable using MCC interface

CLB



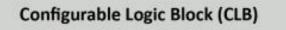
- 32+ BLEs
- Fully configurable using a graphic tool
 - Components included in the graphic tool
- Libraries/custom modules support
- I/O Tristate control
- Smaller Si area for one basic logic element
- Scalability

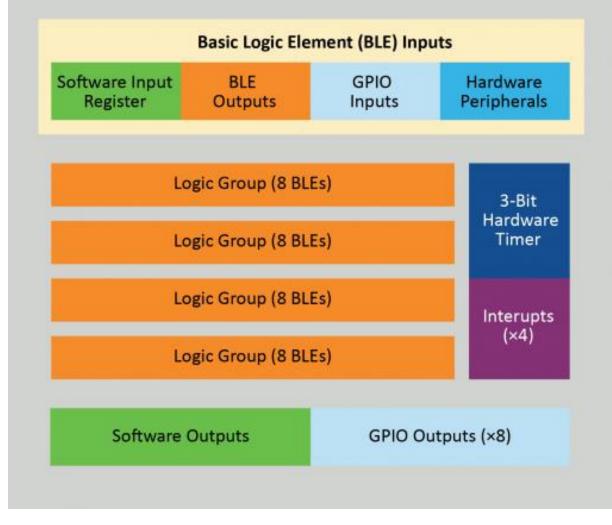
Configurable Logic Block (CLB) What's Inside

- 32 interconnected Basic Logic Elements (BLEs)
 - 4 input LUT + flip-flop
 - Limited interconnects
- Inputs/outputs
- 3-bit HW counter
- Common clock
 - Selectable on device
 - Programmable divider
 - Shared by everything

Configurable Logic Block (CLB) How It Is Connected

External Inputs (on-chip connections):


- 16 channels selectable from 29 sources
 - Comparators, SPI, UART, CLCs, IOCIF, PWMs, CCPs, Timers, Clocks, PPS
 - Input options
 - Synchronous, direct, rising/falling edge detectors


Internal Inputs

- Software Inputs
 - 32 input bits (CLBSWINL/H/M/U SFR registers)
 - CLBSWIN_SFR_WR_HOLD strobe can be used as an input source
- 3-bit (8-state) Hardware Counter
- BLE outputs

Outputs:

- 8 direct PPS outputs
 - With optional PPSOE control
- 4 interrupt outputs
- 5 outputs to other peripherals
 - Timer clock, gate, reset source, CCP, ADC trigger
- Software outputs*
 - One bit per BLE

Configurable Logic Block Synthesizer

Graphical Configuration Toolchain for CLB peripheral

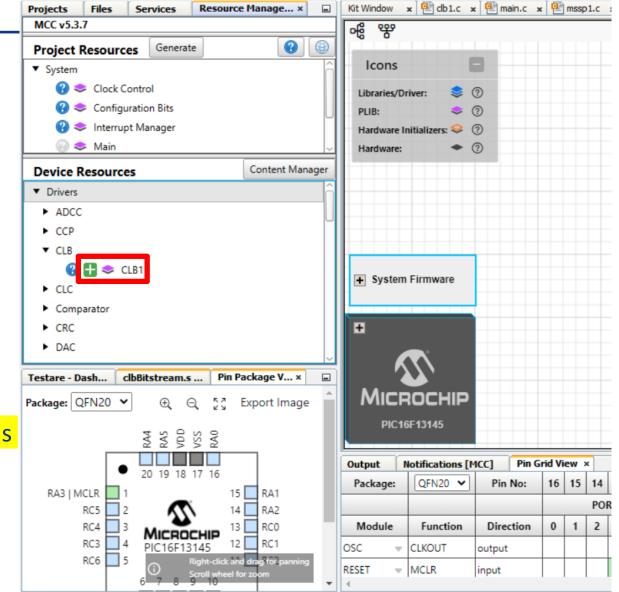
Configurable Logic Block Synthesizer Online version vs MCC version

Feature	Online (bare-metal)	MCC
Accessibility	Visit logic.microchip.com	Install MPLABX and MCC
Sketching and verilog		
Access all CLB features		
Code generation	Simple ZIP file with .c, .h, .s	Embedded into your project
Code integration	X	Fully integrated*
Output peripheral mappings	#defines in ZIP	Notifications in MCC* (integrated in future release*)
Works offline	X	X
Import/export/save/load		

Configurable Logic Block Synthesizer <u>A New Approach to Configuring the Peripheral</u>

- 1. Sketch the logic you want on a canvas (or use Verilog)
- 2. Invoke an on-line backend server which synthesizes the design and returns a bitstream
- 3. Embed the bitstream as source into your project
 - The MCC/Melody version uses generated bitstream to create notifications/alerts with details about the required peripheral configuration
 - The MCC/Melody version includes all files into the project
- 4. Configure the CLB at start-up/run-time
 - The CLB configuration is loaded using CRC module

Configurable Logic Block MCC Melody


CLB Synthesizer Melody Integration

Configurable Logic Block

Starting with MCC/Melody

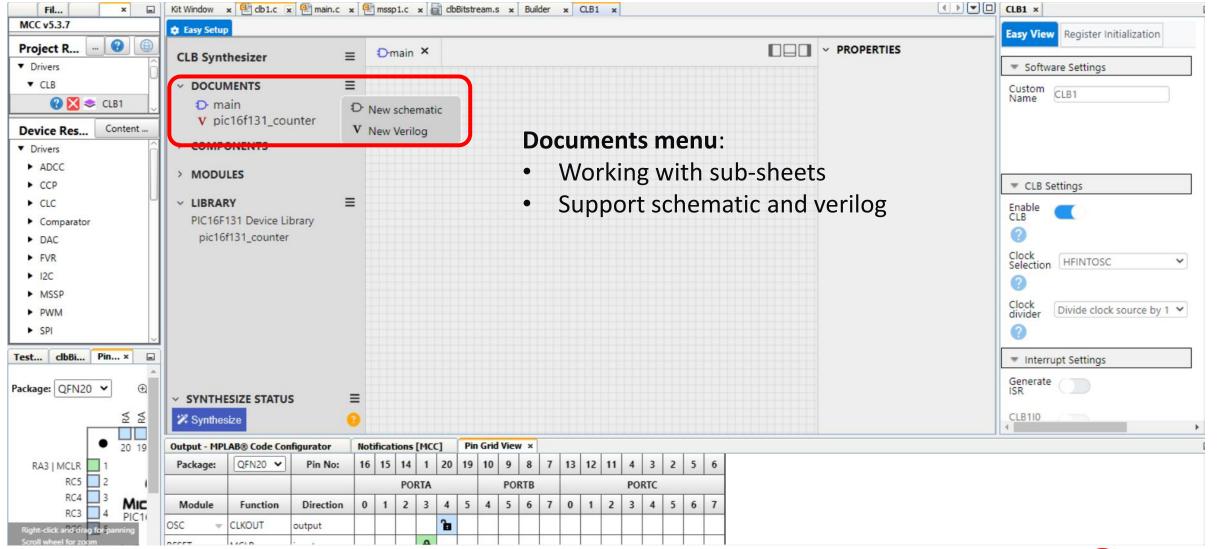
- 1. New project for PIC16F13145
 - Prerequisites
 - <u>PIC16F1xxxx</u> DFP.1.23.378
 - CLB PLIB V.1.0.0-dev.28
- 2. Add CLB to the project resources.
- 3. Use the graphic tool to create a logic design.
- 4. Synthesize
 - The inputs/outputs to/from peripherals should be configured by user after a successful synthesis (Notifications tab)
- 5. Generate code and build.

MICROCHIP

Configurable Logic Block Melody Driver (PLIB) View

MCC v5.3.7 Project Resou Ge @ Easy Set Initialization Drivers CLB CLB Synthesizer NVM CLB Synthesizer
Project Resou Ge Image: Classing start View ▼ Drivers ▼ CLB ♥ M = CLB CLB Synthesizer CLB Synthesizer Enable CLB
 CLB Synthesizer CLB Synthesizer
② X ≈ CLB1 ► CRC CLB Synthesizer
CLB Synthesizer CLB Synthesizer CLB Synthesizer CLB Synthesizer (2)
► NVM Clock HFINTOSC ✓ ?
Device Resour Content Mana
▼ Drivers O Drivers O Divide clock source by 1 ✓ ?
ADCC Load Interrupt Settings
CCP CLC Quick-start examples CLC CLB Tool Configuration CLB Tool Configuration
Freedord Institute a local
Example 2: software driven multiplexer
Example 3: clock divider to a timer
MSSP Documentation after reset
CLB Synthesizer User Guide 🗹 CLB Synthesizer User Guide 🗹 Show Ports
Testar dbBits Pin P x
Package: QFN20 V Q Q Easy View Area
Output Notifications [MCC] Pin Grid View ×
20 19 18 17 Package: QFN20 Pin No: 16 15 14 1 20 19 10 9 8 7 13 12 11 4 3 2 5 6
RAS MICLE I PORTA PORTB PORTC
DC4 2 Modulo Exerction Direction 0 1 2 2 4 5 6 7 0 1 2 2 4 5 6 7
RC3 4 PIC16F1314! OSC CLKOUT output 0 1 2 3 4 5 6 7 6 1 2 3 4 5 6 7
Reset wheel for zoom Reset MCLR input

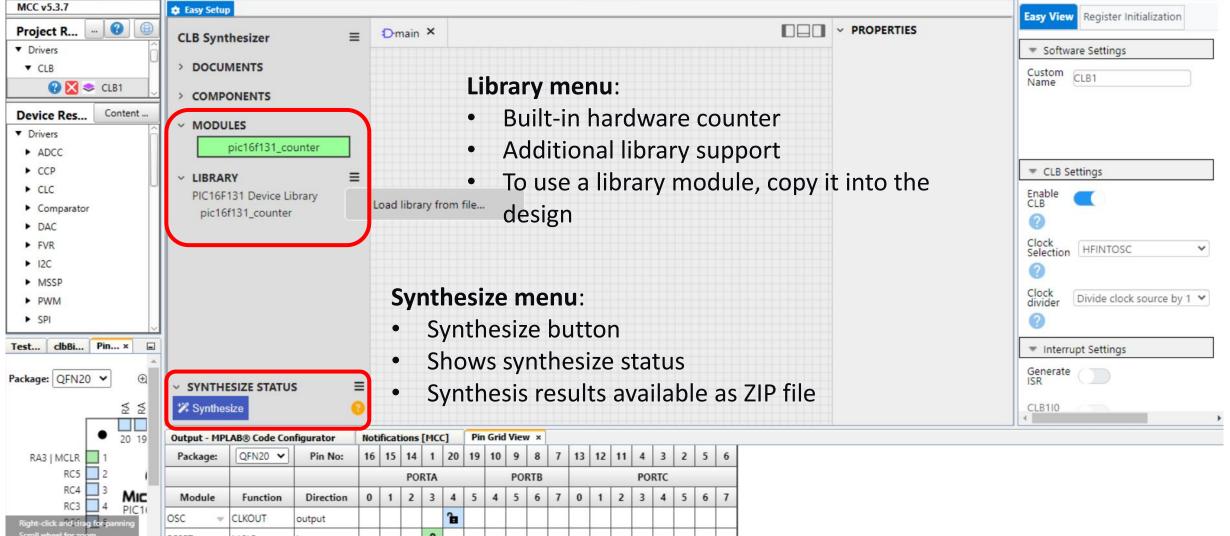
Pin-Grid and Notifications



Configurable Logic Block in Melody Easy View

- Clock source and divider configuration
- Interrupt handlers
- Configurable bitstream address
- Options to enable and load configuration on reset
- Notifications for peripheral configuration
- Pin-grid view integration

asy View R	egister Initialization		
- Coftware	Cattin as		
Software Software			
Name	CLB1		
CLB Settin	igs		
nable CLB			?
Clock Selection	HFINTOSC	~	?
Clock	Divide cleck course b		0
livider	Divide clock source by	yı 🔹	•
Interrupt	Settings		
CLB Tool	Configuration		
Configurable bitstream address			
Bitstream address words)	0x100 <= 0x1F80	<= 0x1F80	
oad CLB			



26

MCC v5.3.7	🏚 Easy Setup		Easy View Register Initialization
Project R 😮 🐵	CLB Synthesizer =	Dmain × PROPERTIES I/O Port O Off-Sheet	Software Settings
▼ CLB	> DOCUMENTS	Components menu:	Custom Name CLB1
Image: Content Oevice Res Content	· COMPONENTS	Drag-and-drop ports and Input Ports Filter search	
▼ Drivers		components onto the canvas	
ADCC CCP		Available components CLBIN2PPS CLBIN3PPS CLBIN3PPS	CLB Settings
CLC Comparator	DDD	Input/output ports Fosc HFINTOSC LFINTOSC	Enable CLB
 DAC 	$\rightarrow \rightarrow $		0
FVR	$\mathbb{D} \mathbb{D} \rightarrow$	Synchronized input (default)	Clock Selection HFINTOSC
 MSSP 		Direct input Positive edge detector	()
PWM SPI		Component properties:	Clock divider Divide clock source by 1
Test clbBi Pin ×		 Select port types (I/O or Off-sheet) 	 Interrupt Settings
Package: QFN20 V	SYNTHESIZE STATUS	 Select input/output ports 	Generate ISR
2 2	🗱 Synthesize	 Configure options 	CLB1I0
• 20 19	Output - MPLAB® Code Configurator	Notifications [MCC] Pin Grid View ×	
RA3 MCLR 🔲 1	Package: QFN20 V Pin No:	16 15 14 1 20 19 10 9 8 7 13 12 11 4 3 2 5 6	
RC5 2		PORTA PORTB PORTC	
	Module Function Direction	0 1 2 3 4 5 4 5 6 7 0 1 2 3 4 5 6 7	
RC3 4 PIC1 Right-click and drag for panning	OSC - CLKOUT output		

Resources

- MCC internal resources:
 - Follow procedure: <u>https://confluence.microchip.com/x/fdDgH</u>
 - CLB PLIB used for code examples scf-pic8-clb-v1 V.1.0.0-dev.28
 - PIC16F131xx DFP: <u>PIC16F1xxxx DFP.1.23.378</u>

- CLB Synthesizer web version
 - https://logic.microchip.com/clbsynthesizer/
- Need help?
 - Press F1 (online docs content update in progress)
 - Send a mail to logic@microchip.com
 - Log a bug in Jira project: <u>https://jira.microchip.com/projects/LOGIC/issues</u>

Resources

Code examples

7-segment decoder

- SPI to WS2812 peripheral
- Stepper motor control
 - Metronome
 - Tachometer
- Quadrature decoder
 - 2 x PIC timers
 - up/down CLB 4-bit timer
- Libraries
 - 4-bit counters
 - Shift registers

WS2812 Matrix driver

- Use external SPI EEPROM to store images
- Support 1/2/4 digital streams up to 750 kbps (maximum 1/2/4 x 2048 LEDs @ 15 fps)

Thank You

