
# Al vs. General Servers and Timing Challenge

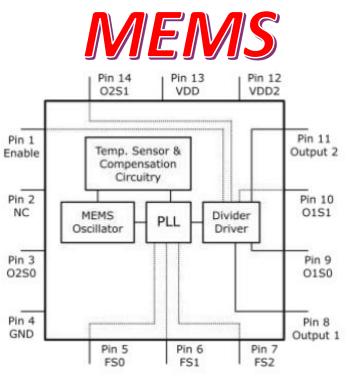
| Features            | AI Servers                                                                  | General Servers                                                      |
|---------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
| Primary Use         | Running machine<br>learning and deep<br>learning workloads                  | Data storage, running<br>applications, providing<br>network services |
| Design Aim          | High computational<br>capabilities, fast data<br>processing speeds          | Efficiency, high stability,<br>reliable data storage                 |
| Computational Units | High number (for parallel processing, rapid matrix multiplications)         | Fewer (operate at slower speeds)                                     |
| Data Transmission   | Efficient, low latency                                                      | Strong capabilities, but slower speeds                               |
| Applications        | AR/VR, <mark>autonomous</mark><br>driving (where low<br>latency is crucial) | General purpose                                                      |

- High-speed interfaces:
  - > 25 Gbps I/O for communication between processors and memory.
  - Require extremely precise timing references
    with minimal jitter
- Power efficiency:
  - Timing circuits need to deliver precision while minimizing power
- Scalability:
  - Timing solutions need to be scalable for future growth in data rates and core count
- Synchronization:
  - Timing solution to support multiple processors or accelerators working in parallel
- Integration with emerging technologies:
  - To support multiple FPGAs for AI workloads.



### **Timing Component Highlight for Al server**



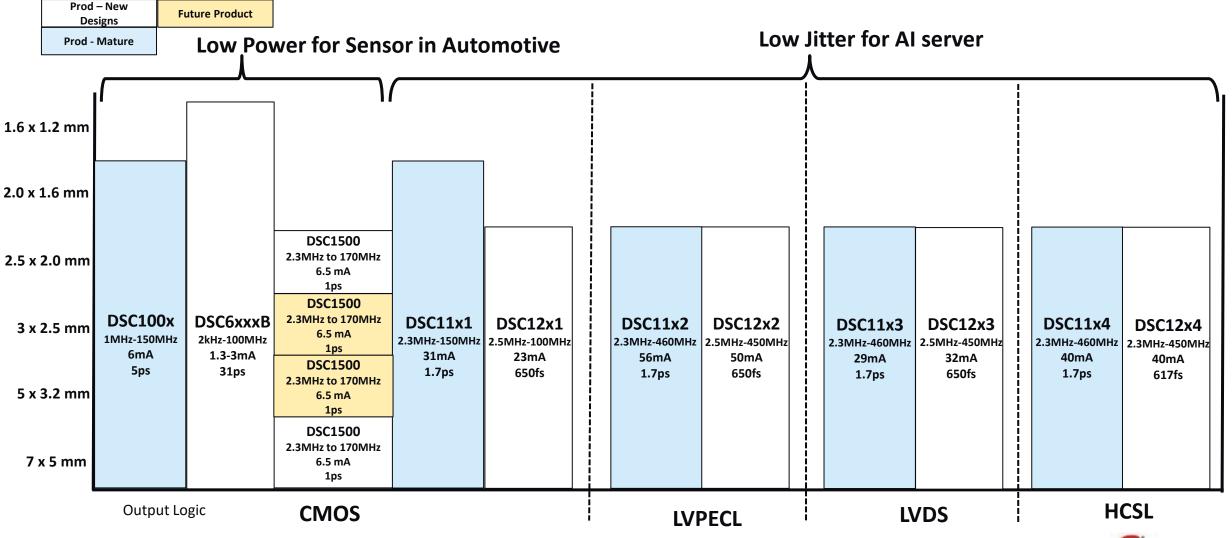

 Timing Solutions for Al Server rely on

- High Precision & Efficiency
- High Reliability & Availability
- Very low Jitter
- Low Skew



### **MEMS Timing In AI Revolution**

- AI & Precision Timing Synergy:
  - Precision timing is foundational for AI-driven innovations, enhancing everything from cloud data centers to autonomous vehicles.
- MEMS Over Quartz :
  - Silicon MEMS technology, offering compactness and precision, is replacing quartz in timekeeping, crucial for Al's rapid computations.
- Critical Applications :
  - MEMS-based timing is vital in harsh environments and is used in sectors like automotive, aerospace, and telecommunications.
- Future of AI Integration:
  - Precision timing will be key in AI advancements, impacting various industries and enabling efficient, reliable electronic functions

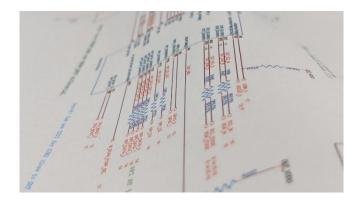



- Leverages Silicon processes
- Miniaturization
- Configurable
- More robust

# WWW $\rightarrow$ IOT, IPv4 $\rightarrow$ IPv6, AI $\rightarrow$ ?



#### **MCHP Single Output MEMS Oscillators**






#### **Microchip TSS: Total System Solution**







#### Product Validation:

 Designs the Functional Validation Board (FVB)

#### System Applications:

 Reuses FVB as Customer Evaluation Board

#### Reference Design:

• Sanitized version of the FVB schematics





Microchip and 3rd Party Solutions



#### **Investment in Data Center - PCIe 6.0**

| Microchip Device P/N            | Microchip Device Type                                                  | Description                                       |
|---------------------------------|------------------------------------------------------------------------|---------------------------------------------------|
| ZL40294                         | LPHCSL Buffer (Intel DB2000)                                           | 20 LPHCSL outputs                                 |
| ZL30291                         | PCIe Clock Generator (Intel CK440)                                     | 19 LPHCSL CLK Gen                                 |
| SY756xx/SYA756xx                | Buffer, I2C, individual OE<br>85Ω or100Ω Termination<br>SYA - AEC-Q100 | 2,4,8,12 output LPHCSL                            |
| ZL30282/ZL3026x                 | PCIe Clock Generator<br>With SSC                                       | Up to 10 output CLK Gen<br>HCSL, LVDS, PECL, CMOS |
| ZL30281                         | PCIe Clock Generator                                                   | 3 output PCIe clock gen                           |
| DSC1200/DSA1200                 | Oscillator<br>DSA - AEC-Q100                                           | HCSL, LVDS, PECL, CMOS                            |
| DSC50x/DSA50x<br>In Development | MEMS PCIe CLK GEN<br>With SSC<br>DSA - AEC-Q100                        | 6 differential 12 CMOS<br>LPHCSL, LVDS, PECL      |
| New Projects in Review          | DB1206 12-output PCIe Buffer                                           | DB1206 listed                                     |
| New Projects in Review          | Low Voltage buffer family LPHCSL 1.2 – 1.8V                            | Pin-to-Pin with TI                                |



# Al Server / Accelerator

Microchip and 3rd Party Solutions

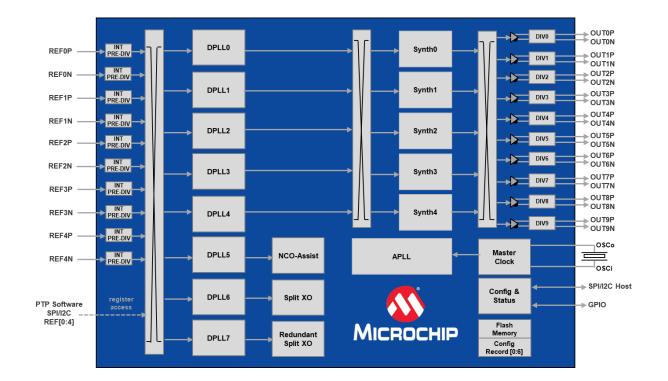


CONFIDENTIAL INTERNAL USE ONLY

### **Quick guidelines for selecting Microchip MEMS**

| Low Power (1.3mA)                          | DSC6xxx                            |
|--------------------------------------------|------------------------------------|
| Smallest (1.6x1.2mm)                       | DSC61xx or DSC60xx                 |
|                                            |                                    |
| Smallest multi-output (3 output 1.6x1.2mm) | DSC613                             |
| Spread Spectrum                            | DSC63xx                            |
|                                            |                                    |
| Best Stability (+/-10ppm)                  | DSC10xx or DSC11xx                 |
| Best Jitter (600fs)                        | DSC12xx                            |
| PCIE (Gen 1/2/3/4)                         | DSC11xx or DSC557xx (multi-output) |
|                                            |                                    |
| PCIE (Gen 5/6)                             | DSC12xx or DSC500xx (multi-output) |
| Best Jitter / Power combination            | DSC15xx                            |
|                                            |                                    |




# 5**G**

#### Microchip and 3rd Party Solutions



### **Azurite Family**

- Multi-channel frac\_N synthesizers
- 100fs<sub>RMS</sub> typical jitter performance
- 100ps O-O alignment
- 100ps I-O delay variation
- Fast Lock to PPS
- Enhanced chip-to-chip interface (A-Series)
  - miToDBasic™
  - miToDSync™

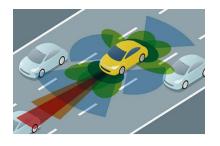


| Part #   | Application  | # of DPLLs  | DPLL     | # Phy  | Max # of | # Low-       | Max Jitter, | Input       | Output Freq. | Pkg. Size, |
|----------|--------------|-------------|----------|--------|----------|--------------|-------------|-------------|--------------|------------|
| Fait #   | Application  | with NCO    | BW, Hz   | Inputs | Outputs  | Jitter APLLs | fs RMS      | Freq. Range | Range        | mm         |
| ZL3064xy | Line Card/JA | x=1,2,3,4,5 | 14-470   | 5D/10S | 10D/20S  | 5            | 150         | 1-1.25G     | 0.5-850M     | 9x9, 7x7   |
| ZL3063xy | SyncE        | x=1,2,3,4,5 | 0.1m-470 | 5D/10S | 10D/20S  | 5            | 150         | 1-1.25G     | 0.5-850M     | 9x9, 7x7   |
| ZL80032  | SyncE        | 2           | 0.1m-470 | 5D/10S | 10D/20S  | 5            | 150         | 1-1.25G     | 0.5-850M     | 9x9        |
| ZL3073xy | IEEE1588     | x=1,2,3,4,5 | 0.1m-470 | 5D/10S | 10D/20S  | 5            | 150         | 1-1.25G     | 0.5-850M     | 9x9, 7x7   |
| ZL80732  | IEE1588      | 2           | 0.1m-470 | 5D/10S | 10D/20S  | 5            | 150         | 1-1.25G     | 0.5-850M     | 9x9        |

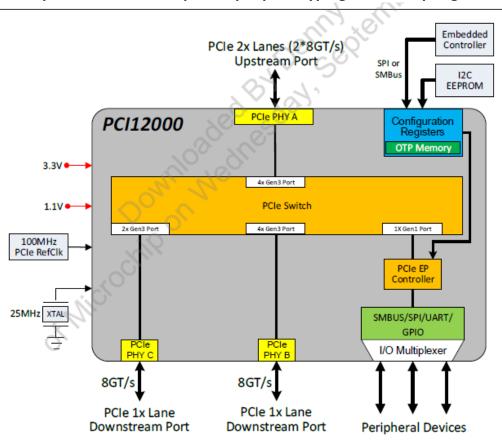


12

## ADAS / Autonomous Driving




### **Qualcomm Snapdragon Ride ADAS/AD**




QDRIVE 3.0 is Qualcomm's scalable autonomous driving platform based on the Snapdragon Ride 8195 processor. Microchip components are validated with Snapdragon Ride Platform making it very easy for OEM and Tier-I customers to adopt in their design. Microchip's Gen 4 PCIe Switch and its development tools/APIs have been tested and validated with the platform, which helps in rapid prototyping while adopting the

**Snapdragon Ride solution** 







- Target Market Segments
  - Automotive
- Target Application
  - ADAS, AD, Infotainment with Snapdragon Ride 8195
  - Targeting OEMs, Tier-1s and Design Houses
- Value Proposition
  - Scalable, high performance ADAS/AD platform
  - Lower power than traditional platforms.
  - MCHP Gen 4 PCIe switch pre-optimized with QCOM's
  - Snapdragon Ride Platform

| TCG Solution            | Automotive<br>PCIe Gen4/5 |
|-------------------------|---------------------------|
| 2 or 4 output<br>Buffer | ZL40262/264               |
| OX                      | VXM7-25Mhz                |
| Clock Gen               | DSA12xx                   |



Most open, scalable, and customizable ADAS/AD solution

#### **Our DSA 12xx – Smallest Differential Oscillator**

#### **Applications:**

- Vital for generative AI applications like ChatGPT
- Key in 5G/6G communications, aerospace, defense, and AR/VR.
- Synchronizes deep learning processes for accurate outputs

#### **Challenges to address:**

- Integration into dense modules
- Functionality under harsh conditions
- Solving unique density problems

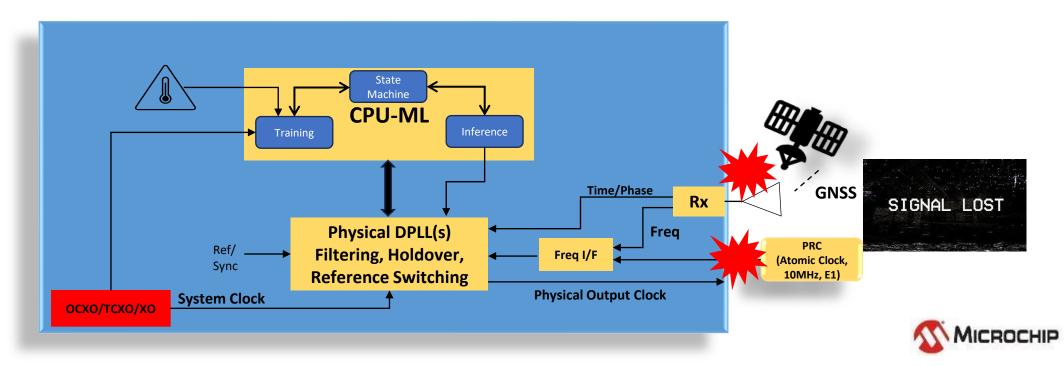
- Meets PCIe Gen1/2/3/4/5/6 clock jitter spec
- Any frequency between 2.3MHz to 450MHz
- LVCMOS/LVPECL/LVDS/HCSL output formats
- 2.5x2.0mm 6-L package available , 2.5 to 3.3V VDD
- ±20ppm/ ±25ppm / ±50 ppm stability
- Up to -40°C to +125 °C temperature range for LVCMOS and LVDS output
- Dual frequencies through Frequency Select input
- AEC-Q100 Automotive grade product available

| Most Compelling Features                            | Benefits                                                             |  |
|-----------------------------------------------------|----------------------------------------------------------------------|--|
| ~0.65ps integrated RMS phase jitter (12k-20MHz)     | Excellent jitter margin for high performance networking applications |  |
| Smallest deferential oscillator: 2.5x2.0mm          | Save board space, ideal SERDES clock for SiP module design           |  |
| Two pre-programmed frequencies selected by FS input | Improve design flexibility, BOM consolidation.                       |  |



### **One More Thing : AIHO**

#### Why Smart Oscillators


Frequency drift of an oscillator output clock is impacted by:

- Temperature
- Pressure
- Magnetism
- Humidity

These environmental variables are used by the ML solution to learn the oscillator behavior then compensate and remove frequency wander during reference loss (holdover) periods.

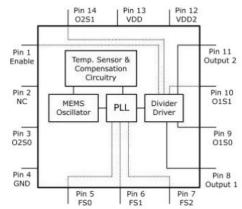
#### Applications

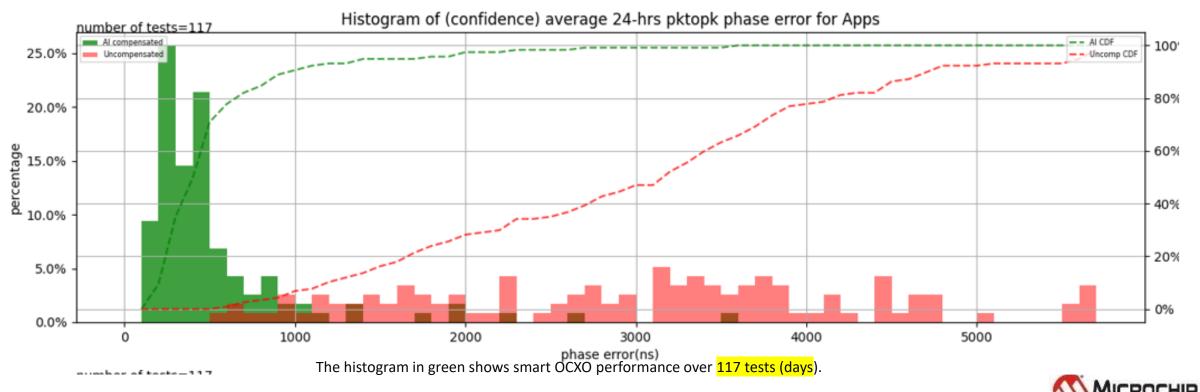
- Service providers require reliable holdover accuracy during loss of GM or GNSS failures. These requirements can reach a 12ppt holdover accuracy, which corresponds to a maximum phase drift of 1 microsecond per 24 hours.
- This type of requirements are associated with very expensive oscillators. Relatively cheaper oscillators can be used with a ML-engine to provide the same level of accuracy.



**Міс**воснір

17


### **ML Reliability in our Smart OX**


#### • The Specifications:

The ML-solution is programmable such that Training is performed in the background with controlled captured feature length (hours) and training time. Parallel multi-algorithm engine that choses best

performance solution for current environment conditions. • Reliability:

Long term analysis of the solution over thousands of hours and a bank of OCXOs showed that the developed smart-OCXOs drift less than 1 microseconds per 24-hours 90% of the time.





# Q&A

